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S U M M A R Y
Recent geomagnetic observations reveal localized oscillations in the field’s secular accel-
eration at high latitudes, with periods of about 20 yr. Several types of waves in rotating
magnetized fluids have been proposed to explain equatorial oscillations with similar high fre-
quencies. Among these are non-axisymmetric Alfvén waves, magneto-Coriolis waves and, in
the presence of fluid stratification, magnetic-Archimedes–Coriolis (MAC) waves. We explore
the hypothesis that the observed high latitude patterns are the signature of MAC waves by
modelling their generation in Earth’s core. We quantitatively assess several generation mech-
anisms using output from dynamo simulations in a theoretical framework due to Lighthill.
While the spatio-temporal structure of the sources from the dynamo simulations are expected
to be realistic, their amplitudes are extrapolated to reflect differences between the simulation’s
parameter space and Earth-like conditions. We estimate full wave spectra spanning monthly
to centennial frequencies for three plausible excitation sources: thermal fluctuations, Lorentz
force and magnetic induction. When focusing on decadal frequencies, the Lorentz force ap-
pears to be most effective in generating high-latitude MAC waves with amplitude estimates
falling within an order of magnitude of observed oscillations. Overall, this study puts forward
MAC waves as a viable explanation, in the presence of fluid stratification at the top of Earth’s
core, for observed field variations at high latitudes.
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1 I N T RO D U C T I O N

Satellite-based observations at a high temporal sampling (Olsen
et al. 2000; Friis-Christensen et al. 2006; Maus 2007) reveal local-
ized fluctuations on short timescales compared with the century-
long convective overturn times. The spatial pattern of the fluctua-
tions are reminiscent of known wave motion for several types of
waves in rotating magnetic fluids. Understanding potential genera-
tion processes for these waves offers an indirect, yet insightful way
of probing the convective processes that generate these waves.

A steady core surface flow accounts for most of the geomagnetic
field variations (Bloxham 1992), obscuring the fingerprint of short-
period waves in the first time derivative of the field. Those features
are best detected in the second time derivative of the field, also
called secular acceleration (SA). Space-based field measurements
from the last two decades have enabled estimates of SA up to
spherical harmonic degree 16 (CHAOS models, see e.g Finlay et al.
2020). A snapshot of the northern hemispheric radial SA at the
core surface in 2016.0, estimated with CHAOS-7.12, is shown in
Fig. 1. Four patches of alternating signs, corresponding to spatial
oscillations of angular order 3, are visible from Northern Canada
to Siberia, with strongest amplitude under Eastern Siberia. Chi-
Durán et al. (2020) found that the dominant mode of variability
in this signal is a westward-travelling pattern of amplitude 1.5 μT

yr−2 and period 21 yr. Higher order waves with similar periods, both
eastward and westward travelling, are also reported in the equatorial
region.

Dynamical theory and numerical modelling demonstrate various
types of waves that can propagate within the outer core at decadal
periods (e.g. Gillet et al. 2022). The presence of rapid rotation
and magnetic effects gives rise to three main categories defined by
the two forces that dominate their balance: Inertial waves (inertia
and Coriolis effects), Alfvén waves (inertia and Lorentz force) and
magneto-Coriolis (MC) waves (Coriolis and Lorentz forces). While
some slow inertial modes in a spherical shell can attain decadal peri-
ods (Zhang et al. 2001), their propagation direction is not compatible
with the high-latitude signal of interest in this study. Axisymmetric
Alfvén waves (also called torsional waves) have been detected in
core flow models with a period of around 6 yr (Gillet et al. 2010).
Their zonally invariant nature, however, argues against them as a
candidate for the waves portrayed in Fig. 1. Aubert & Finlay (2019)
found non-axisymmetric Alfvén waves in a very high-resolution
simulation of core dynamics. These waves have a columnar struc-
ture characteristic of quasi-geostrophy (QG) and propagate outward
from rising plumes, focusing their power at the equator; this renders
them incompatible with high-latitude oscillations. Planetary-scale
MC waves have periods that are too long, although Hori et al. (2015)
and Gerick et al. (2021) recently showed that smaller scale waves for
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Figure 1. Snapshot of the core-surface geomagnetic acceleration from the
CHAOS-7.12 model over the Northern Hemisphere, in 2016.0 (truncated at
spherical harmonic degree l = 13).

a realistic magnetic field configuration could have frequencies com-
patible with observed waves. However, their high damping rates are
potentially incompatible with the observed longevity of the North-
ern Hemisphere SA pattern, which has been travelling with modest
damping for 20 yr (Chi-Durán et al. 2021).

Another mechanism leading to higher frequency oscillations is
due to the presence of stable stratification, adding a third restoring
force to create so-called magnetic–Archimedes–Coriolis (MAC)
waves (Braginsky 1993). Whether or not such a stably stratified
region exists at the top of the core is subject to debate both within
the seismological and geomagnetic communities (see e.g. van Tent
et al. 2020; Gastine et al. 2020). This work takes its existence as a
premise, and shows that such a layer can support high-latitude waves
compatible with observations. MAC waves have already been pro-
posed to explain axisymmetric oscillations (Buffett 2014; Buffett &
Knezek 2018) and equatorial waves (Buffett & Matsui 2019). Pre-
vious models for non-zonal MAC waves included analytical treat-
ments on a β-plane (i.e. neglecting sphericity; Braginsky 1998) and
more complex numerical models in spherical shells with arbitrary
field and stratification configurations (e.g. Knezek & Buffett 2018).
Buffett & Matsui (2019) recently derived a fully spherical analytical
model, which is shown here to represent equatorial and high-latitude
oscillations in a unified framework.

The presence of waves requires the existence of a generation
mechanism. Modelling this excitation offers a way to put quantita-
tive constraints on convective processes inside the core. By match-
ing observed and modelled wave amplitudes, we can draw infer-
ences about the strength of the convective forcings. Geodynamo
models are capable of reaching the so-called MAC balance, which
is thought to be relevant for conditions in the core (Aubert et al.
2017). If the model conditions are close enough to actual Earth val-
ues, one could infer the wave generation directly from a simulation.
One example is the recent study of Aubert & Finlay (2019), which

identified buoyancy fluctuations as the main source of QG Alfvén
waves. A lower-resolution model may overly damp the waves of
interest, making direct simulations less feasible. Still, if the sim-
ulations reproduce a MAC balance, one can use such a model to
constrain the spatial and temporal pattern of sources. The amplitude
of the sources can then be extrapolated to Earth-like conditions (see
Buffett & Knezek 2018), making it possible to link the observed
wave amplitudes with viable source mechanisms.

This work expands upon earlier theory for MAC waves in a spher-
ical shell (Buffett & Matsui 2019) to take into account wave exci-
tation. A general framework to solve for forced MAC waves with
arbitrary spatio-temporal forcing patterns is presented, and used
with source terms evaluated from a suitable geodynamo model. It is
shown that observed patterns and non-axisymmetric high-latitude
MAC waves have similar features, and that when extrapolated to
core conditions, magnetic stresses are the strongest excitation source
and predict realistic wave amplitudes. This advances MAC waves as
a potential candidate for the observed high-latitude SA oscillations.

2 D E S C R I P T I O N A N D N U M E R I C A L
T R E AT M E N T O F M A C WAV E S

This section presents the analytical and numerical treatment of
forced MAC waves in a thin, rotating, stratified shell filled with
an electrically conducting fluid. The basic premises are identical to
Buffett & Matsui (2019), hence we only give a brief overview of the
assumptions required to build the analytical model. Upon discretiza-
tion, waves appear as eigenvectors of a linear matrix operator. We
show how forced waves can be decomposed on the non-orthogonal
basis formed by these eigenvectors.

2.1 Analytical model for forced MAC waves

Waves are modelled as small perturbations on a background state at
rest, with a known spatially varying magnetic field B0(x) and a fixed
density stratification ρ0. None of these background fields change
with time t. The perturbations in velocity, magnetic field and density
are denoted by v(x, t), b(x, t) and ρ1(x, t), respectively. Because
the shell thickness H is an order of magnitude smaller than the
horizontal length scale of the waves of interest (L � 2000 km),
continuity requires the radial component of the velocity to be small
compared with its horizontal components. Several approximations
stem from these conditions:

(i) The vertical force balance is hydrostatic to the leading order.
(ii) The density perturbations due to radial wave motion are

small, which justifies the use of the Boussinesq approximation with
a constant reference density ρ0 in the inertial terms.

(iii) Only the radial component of rotation is retained in the Cori-
olis term due to the smallness of radial motions.

(iv) The condition H � L means that radial gradients in b and
v are large compared with horizontal gradients. Assuming that all
components of B0 have the same order of magnitude, this yields B0 ·
∇ � B0r∂r , where B0r is the radial component of the background
magnetic field.

(v) Gradients in large-scale quantities are supposed to be much
smaller than the (radial) gradients in wave quantities.

The last two approximations simplify the treatment of the
magnetic tension and induction terms. The linearized Lorentz
force becomes μ−1 B0 · ∇b � B0r∂r b, where μ is the permeabil-
ity of free space. Similarly the linearized induction term becomes
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∇ × (v × B0) � B0r∂rv. In spherical coordinates (r, θ , λ—radial
distance, colatitude, longitude), the momentum, induction, continu-
ity and mass conservation equations become

∂r p = −ρ1g + ρ0 Fr (1)

∂tvθ − 2� cos θ vλ = − 1
ρ0 R ∂θ p + 1

ρ0μ
B0r∂r bθ + Fθ (2)

∂tvλ + 2� cos θ vθ = − 1
ρ0 R sin θ

∂λ p + 1
ρ0μ

B0r∂r bλ + Fλ (3)

(∂t − η∇2)b = B0r∂rv + F I (4)

∇ · v = ∇ · b = 0 (5)

∂tρ1 = −vr∂rρ0, (6)

where p and ρ1 denote the pressure and density perturbations carried
by the waves and g is the acceleration of gravity at R, the core–
mantle boundary (CMB) radius. Other terms appearing here are
Earth’s rotation rate �, and the fluid’s magnetic diffusivity η. We
have included a generic forcing term F in the momentum equations,
F I in the induction equations. The specific form of these forcing
terms is based on the approach of Lighthill (1952).

Boundary conditions for those waves are detailed in Buffett &
Matsui (2019), and consist of no-penetration at the CMB, zero
horizontal velocities at the base of the layer and zero horizontal
magnetic perturbations at the top and bottom of the layer. Rigorously
speaking, the latter condition should be applied below a skin depth
over which magnetic perturbations penetrate the interior. This skin
depth (given by δ = √

2η/ω with ω the wave frequency, δ � 10 km
for a 20-yr wave) is small in comparison with the assumed layer
depth (140 km, see Section 2.3). Numerical calculations of the
waves with and without an explicit treatment of the skin depth
justifies our choice of the magnetic boundary condition at the base
of the layer.

2.2 MAC wave forcing by convection

We are now in possession of a model for unforced waves, and turn to
the description of the wave generation. We propose that these waves
are excited by large-scale convective motions below the stratified
layer. Wave generation by internal processes is described by an ap-
proach first introduced by Lighthill (1952). One of the underlying
assumptions is that wave processes do not greatly influence the con-
vective (waveless) fluid motions. However, there is no attempt to
separate the motion into convective and wave-like parts. Instead the
equations governing the full fluid motion inside the wave region
are written as the sum of a wave equation and a correction term.
This correction includes terms that must be added to the wave equa-
tions to obtain an exact description the full governing equations. We
illustrate the approach with the induction equation before offering a
physical interpretation. The exact form of the induction equation is

∂t B + V · ∇ B = B · ∇V + η∇2 B. (7)

We write it as the sum of a wave equation acting on V and B and a
correction term:

(∂t − η∇2)B − B0r∂r V = −V · ∇ B + B · ∇V − B0r∂r V . (8)

The terms on the right-hand-side of eq. (8) are associated the forcing
term F I in eq. (4). Specific the forcing term F I becomes

F I = ∇ × (V × B) − B0r∂r V . (9)

In the Lighthill approach we assume that F I can be evaluated us-
ing the convective parts of V and B because the wave motion is
assumed to be small. Recall that this was the justification in Sec-
tion 2.1 to linearize the governing equations for the wave motion.
The Lighthill approach also assumes that the left-hand side of eq.
(8) represents the wave motion. There are several ways to think
about this. We might appeal to a separation of timescales between
the waves and the convective flow to justify letting most of the time
variation in B be due to wave motion. Alternatively, we might ap-
peal to spatial separation because convection is mostly confined to
the region below the stratified layer and the wave motion is con-
fined to the stratified layer. Conceptually, the convective motion is
producing variations in density, magnetic and electric fields, which
collectively serve as ‘seeds’ for wave motion. We assume there is
no feedback of this wave motion on the convection.

The Lighthill approach has been successfully applied to the prob-
lem of sound generation by turbulent flow (Lighthill 1952). It has
also been tested in the problem of internal wave generation in a layer
above a vigorously convecting fluid (Lecoanet et al. 2015). We ex-
tend the approach here to the problem of MAC wave generation due
to convection in an underlying region.

Applying the Lighthill approach to the Boussinesq momentum
equation yields additional forcing terms. The full momentum equa-
tion is

∂t V + V · ∇V + 2� cos(θ ) ẑ × V = − 1

ρ0
∇ P

− ρ̃

ρ0
g + 1

ρ0μ
B · ∇ B, (10)

where ρ̃ is the difference between the full density and the back-
ground state ρ0. This means that the pressure P represents the dy-
namic pressure fluctuation relative to the hydrostatic pressure based
on ρ0. It also means that ρ̃ contains both the convective density
fluctuations and the fluctuations due to wave motion. Recall that the
wavelike density perturbation ρ1 obeys (6). Consequently, the exact
momentum eq. (10) can be written as

∂t V + 2� cos(θ ) ẑ × V = − 1

ρ0
∇ P + ρ1

ρ0
g + 1

ρ0μ
B0r∂r B

+
[
−V · ∇V + ρ̃ − ρ1

ρ0
g + 1

ρ0μ
(B · ∇ B − B0r∂r B)

]
, (11)

where three forcing terms appear in square brackets. The first one,
due to Reynolds stresses, is neglected due to the smallness of the
Rossby number in Earth’s core. The second one is due to thermal
anomalies,

Fbuoyancy = (ρ̃ − ρ1)g/ρ0, (12)

and the third one to large-scale magnetic stresses,

FLorentz = (B · ∇ B − B0r∂r B)/(ρ0μ). (13)

Each of the forcing terms in (9), (12) and (13) have two parts.
One part depends on the total velocity and magnetic fields, which
are mainly due to convection. The second part is a wavelike modi-
fication to ensure that the full governing equations are represented.
In most previous applications of Lighthill’s approach the wavelike
corrections are small. We directly verify this approximation for the
Lorentz force in eq. (13), which proves to be the largest of the
forcing terms.

To be very specific in our subsequent discussion we use overbars
to denote properties of the convective state that are unaffected by
the waves. These are also the quantities we extract from the dy-
namo simulations because the wave motion is heavily damped in
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the simulation. We stress that V and B for the total fields are dis-
tinct from the background fields V 0 and B0. The background fields
are independent of time and are simply used to obtain linearized
wave equations. In the original problem of Lighthill (1952), the
overbarred variables would be the turbulent fluctuations that force
sound waves, while the background state would simply be at rest.
The final expressions of the forcings become

F I = ∇ × (
V × B

)
, (14)

Fbuoyancy = ρ̃g/ρ0, (15)

FLorentz = B · ∇ B/(ρ0μ). (16)

We now turn to the question of solving the forced wave equa-
tions in spherical geometries. Eqs (1)–(6) can be recast into a single
scalar equation for the θ component of the magnetic perturbation
bθ (see Appendix A for details). It is convenient to use a mod-
ified meridional perturbation b′′

θ = (1 − y2)bθ , where y = cos (θ )
is a modified meridional coordinate. bθ (and hence b′′

θ ) is Fourier-
transformed in longitude, time and radius. A half-range sine trans-
form is used in the radial direction to most naturally enforce the
boundary conditions.1 Each mode is thus given by

bθ (t, λ, y, z) = b̃θ (y) sin(kz)ei(mλ−ωt), (17)

where z = r − R, m is the angular order, ω the angular frequency and
k = jπ /H with j > 0 the radial order. Details of the derivation are
similar to Buffett & Matsui (2019) with the addition of forcing terms
(see the Appendix). The background radial field B0r is assumed
uniform for purposes of analytical tractability. The equation in its
final form reads:

d2
y b̃′′

θ +
(

C2 y2 + mC

M(1 − y2)
− m2 − 1

(1 − y2)2

)
b̃′′

θ = F, (18)

where C and M are two non-dimensional terms scaling the mag-
nitudes of Coriolis and Lorentz forces relative to buoyancy, given
by

C = 2�ωk2 R2

N 2
, M = B2

0r k4 R2

ρ0μχ N 2
(19)

(χ is a magnetic diffusion factor). dy is the derivation operator for
functions that solely depend on y. F is the sum of five terms that
depend linearly on F̃r , F̃θ , F̃λ, F̃I θ and F̃Iλ; later, we assess the wave
response to these individual components. The expressions for χ and
the forcing term F are given in the Appendix.

If |m| �= 1, regularity of the solution of eq. (18) imposes that
b̃′′

θ (y) = O
(
(1 − y2)2

)
, that isb̃θ (y) = O

(
1 − y2

)
or equivalently

b̃θ (±1) = 0. With |m| = 1, the (1 − y2)−2 term in the right-hand
side of eq. (18) is removed and b̃θ is not required to vanish at the
boundaries anymore. However, in order for bθ to have continuous
first derivatives over the poles, one needs dy b̃θ (y = ±1) = 0.

2.3 Numerical treatment of the unforced problem

This section details how eq. (18) is solved on a discretized domain
in y = cosθ . Setting F = 0 and multiplying by −M(1 − y2)y−2, the

1The forcing terms are transformed in the same way, except for Fθ and Fλ

whose radial decomposition is a half-range cosine transform, for reasons
detailed in the Appendix.

unforced equation becomes a quadratic eigenvalue problem, where
C (or equivalently ω, the wave angular frequency) is the eigenvalue:(

− M(1 − y2)

y2
d2

y + M(m2 − 1)

y2(1 − y2)

)
b̃′′

θ − m

y2
Cb̃′′

θ − C2b̃′′
θ = 0. (20)

Upon discretization, this problem is converted to a linear eigen-
value problem by defining an extended state vector x of size 2n
(where n is the grid size) that is the concatenation of b̃′′

θ and Cb̃′′
θ .

This procedure is analogous to casting a second-order differential
equation into a first-order equation in the function and its first deriva-
tive; Cb̃′′

θ is proportional to the time derivative of b̃′′
θ . x is solution

of

Ax − Cx = 0, (21)

where

A =
[

0n In

L1 L2

]
, (22)

L1 = −diag

(
M(1 − y2)

y2

)
D2,y + diag

(
M(m2 − 1)

y2(1 − y2)

)
, (23)

and

L2 = −diag

(
m

y2

)
. (24)

In (23) and (24), diag(f(y)) denotes an n × n matrix whose diagonal
elements are the values of f on the gridpoints. In is the identity
matrix of size n. D2,y is a discrete second derivative on the grid.

The symmetry of the problem with respects to y = 0 permits
solutions for the modes in one hemisphere only, with y ∈ [0, 1]. Two
types of equatorial boundary conditions are considered, depending
on the nature of the symmetry. Enforcing b̃′′

θ (0) = 0 gives rise to
antisymmetric modes, while dy b̃′′

θ (0) = 0 yields symmetric modes.
Close to the equator, the dominant balance in the unforced version
of eq. (18) is d2

y b̃′′
θ � −mC/Mb̃′′

θ . With C < 0 (westward-travelling

modes), b̃θ depends exponentially on y and either boundary condi-
tion produces solutions for b̃θ that have very small amplitude in the
equatorial region. This leads to high-latitude modes; the symmetric
and antisymmetric modes are nearly identical in shape with very
similar periods. Henceforth, high-latitude modes will only be solved
for with zero boundary conditions at y = 0 and y = 1. Eastward-
travelling waves (C > 0) have largest amplitudes at low latitudes.
When C is small enough and m is large the (m2 − 1)(1 − y2)−2

term in eq. (18) dominates at high latitudes, forcing exponential
decreases in amplitude toward the poles. Fig. 2 shows the geometry
of the wave model and summarizes the boundary conditions.

We solve (21) on a non-uniform grid with Ny = 150 points and

higher resolution close to the pole, defined by yi = sin
(

2i−1
2Ny

π

2

)
for

1 ≤ i ≤ Ny. Second order derivatives are evaluated using Fornberg’s
method (Fornberg 1988) with a five-point stencil, giving fourth-
order accuracy. Fig. 3 displays the five high-latitude modes (m =
3) and five equatorial modes (m = 6). In each case the lowest five
frequencies are selected. The angular orders were chosen accord-
ing to the observed SA patterns. Representative values of the core
parameters were used, along with H = 140 km, N = 0.5 �, B0r

= 0.5 mT and radial order j = 1. (Chi-Durán et al. 2020,showed
that these values account for the phase speeds of observed waves).
The meridional structure and period of the gravest high-latitude
mode are consistent with observed waves (see Fig. 1 and Chi-Durán
et al. 2020); theory predicts westward-travelling modes with pe-
riods of about 20 yr, whose amplitude peaks between 65◦N and
70◦N. Other modes have too much power poleward of 80◦N. Using
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Figure 2. Sketch of the geometry and boundary conditions of the high-
latitude wave model. The thickness of the spherical shell has been enlarged
for presentation purposes. The amplitude of the gravest high-latitude eigen-
mode of eq. (20) (period =21.3 yr, westward-travelling) is overlaid.

Figure 3. Some eigenmodes of eq. (20) and their associated periods.
Westward-travelling (top panel) and eastward-travelling (bottom panel)
modes with the longest periods have been selected. Note b̃θ , rather than
its transformed version, is being plotted.

a realistic background field structure, with decreasing amplitude
close to the pole, might alter the structure of the waves above 80◦N.
Long-period, eastward-travelling equatorial modes are also consis-
tent with observations, although the neglect of meridional variations
in the background magnetic field reduces the equatorial confinement
(Buffett & Matsui 2019). Relative variations in the amplitude of the
background field are less important at high latitudes, justifying the
use of a constant B0r in this study.

Note that A depends on the damping term χ (through M), which
causes the wave frequency, ω, to be complex. Because χ depends on
ω we would normally iteratively update χ using the eigenfrequency
and repeat the calculations. In practice, we find that waves with
decadal periods are lightly damped by magnetic diffusion, so it

suffices to calculate χ using a nominal value of ω. We henceforth
use a fixed reference wave period of 20 yr when computing χ .

2.4 Decomposing forced waves on the eigenmode basis

The solutions of eq. (18) for the forced waves can be represented
as linear combinations of the eigenmodes of the unforced wave
equation. In this subsection, we describe how this decomposition
is handled in the discretized version of the wave equation, which
reads

Ax − Cx = F, (25)

where F is the discretized representation of −M(1 − y2)y−2F .
We illustrate the idea with the case where A has distinct eigen-

values, even though subsequent results are also valid in the more
general case where A has degenerate eigenvalues (but remains di-
agonalizable). The sequence of 2n eigenvalue-eigenvector pairs of
the unforced wave equation is denoted (Ci , xi ). The eigenvectors
(xi )i=1..2n form a basis of the discrete space. We seek to express the
solutions of eq. (25) as a linear combination of these basis vectors.

Each eigenvalue Ci has an associated left eigenvector, denoted
pi , which satisfies pH

i A − Ci pH
i = 0, where (·)H denotes Hermitian

conjugation (see e.g. Friedberg et al. 2002). Taking the dot product
of this identity with x j , one obtains pH

i Ax j − Ci pH
i x j = 0. Simi-

larly, x j obeys Ax j − C j x j = 0. Dotting with pi (i.e., multiplying
by pH

i on the left) and subtracting, one obtains

∀i, j, (Ci − C j )p
H
i x j = 0. (26)

Because the eigenvalues are distinct, this gives an orthogonality
relationship between left and right eigenvectors. The solution to our
forced problem eq. (25) for x can thus be decomposed as

x =
2n∑

i=1

(pH
i x)xi . (27)

Dotting (25) with pi , one obtains

(Ci − C)pH
i x = pH

i F. (28)

The solution of the forced problem decomposed on the basis of
eigenvectors (xi ) finally reads:

x =
2n∑

i=1

pH
i F

Ci − C
xi . (29)

Under this decomposition, forced waves appear as weighted linear
combinations of the eigenmodes, with higher weights for the modes
whose eigenfrequencies are close to the excitation frequency. Note
that eq. (25) could also be solved directly, as a linear system, for
each frequency (or equivalently each C). However, eq. (29) is more
efficient in that it involves a single ‘heavy’ computation step (eigen-
decomposition of A), then simple dot products for each different
frequency and forcing.

3 E S T I M AT I O N O F S O U RC E S

Eq. (18) allows two types of forcing terms. One includes terms that
arise in momentum equations. The other arises from the forcing
term in the induction equation (details are given in the Appendix).
Both of these source terms stem from convective motions below the
stratified layer. We resort to numerical modelling to estimate their
structure.
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Figure 4. Snapshots of the radial magnetic field at the CMB in the control
simulation (top panel) and in the Pm = 2 simulation (bottom panel), in
Elsasser units (i.e. we represent B/(

√
ρμ�η)). An Aitoff projection is used.

We employ the geodynamo model Calypso (Matsui et al. 2014)
to constrain the spatial structure and time dependence of the forcing
terms. Calypso solves the magnetohydrodynamics equations under
the Boussinesq approximation in a rotating fluid shell with Earth’s
core geometry. Uniform temperatures are imposed at the CMB and
inner core boundary (ICB) to drive convection. Equations are non-
dimensionalized using the diffusion-free scaling of Christensen &
Aubert (2006). In addition to boundary conditions and a heat sink
(see below), four parameters specify a given model run:

E = ν

�L2
, Pr = ν

κ
, Pm = ν

η
, Ra∗ = αT g�T

�2 L
, (30)

where ν is the fluid’s dynamic viscosity, κ its thermal diffusivity, αT

its coefficient of thermal expansion, �T the temperature gap across
the outer core and L = 0.65R the outer core thickness, hereafter
2260 km. We recall that g is defined as the acceleration of gravity at
the CMB. Fields are represented using spherical harmonics, with a
triangular truncation at degree lmax = 255. The radial grid consists of
360 Chebyshev collocation points, which translates into a maximum
radial grid spacing of 10 km and a mean grid spacing of 2 km within
150 km of the boundaries.

Source terms are extracted from a control run with parameters E
= 10−5, Pr = 1, Pm = 0.5 and Ra∗ = 3200. The magnetic Reynolds
number (Rm) for this run is approximately 200. In order to reach
more robust conclusions, we run a second simulation with the same
parameters, except Pm = 2. This has the effect of lowering magnetic
diffusivity, increasing Rm to 900, that is closer to expected values
in Earth’s core. Snapshots of the radial magnetic field at the CMB
in both runs are shown in Fig. 4, at full resolution. The field is
predominantly dipolar and has a more heterogeneous structure in
the Pm = 2 simulation, with more reversed flux patches present in
both hemispheres.

MAC waves are not supported in simulations with the stated pa-
rameters because of the strong damping due to viscosity (E is 10
orders of magnitude bigger than in Earth’s core) and due to mag-
netic diffusion (Eη := E/Pm is four orders of magnitude too big).
One way to quantify the damping of waves is in terms of the quality
factor Q = R(ω)/(2�(ω)). For high-latitude waves of period O(10)

years the quality factor is roughly 50 at Earth’s core conditions.
With model parameter values (and stratified layer characteristics),
calculations show that the waves are critically damped, precluding
their detection. Two other quantities characterizing the presence
of hydromagnetic waves in such simulations are the Lundquist
number S = τ η/τA and the Alfvén number A = τA/τU, where
τA = L

√
ρ0μ/B, τη = L2/η and τU = L/U are, respectively, the

Alfvén, magnetic diffusion, and core overturn timescales. The con-
trol simulation has S = 350 while the Pm = 2 simulation has S
= 1700, above the value of 900 suggested by Aubert & Gillet
(2021) for the presence of waves in a dynamo simulation. How-
ever, the Alfvén number in these runs is, respectively, 0.6 and
0.5, which is not small enough to separate waves from the con-
vective background. Aubert & Finlay (2019) showed that lower-
ing diffusivities in a suite of geodynamo models towards Earth’s
core conditions allows the emergence of rapid Alfvén waves re-
sembling observed equatorial oscillations. This supports the idea
that the MAC waves studied herein could be generated by the
model, if more realistic parameter values (lower E and Pm) were
used.

Although the model is not expected to support MAC waves,
the presence of a stratified layer is required to support the waves.
This means we want to account for stratification in assessing the
magnitude of the source terms due to the underlying convection.
Applying a uniform heat sink through the volume of the core lowers
the heat flow at the CMB. When the integrated heat sink exceeds
the ICB heat flow we expect an inflow of heat at the CMB, which
establishes a thermally stratified layer. We use the same heat sink
amplitude as Buffett & Knezek (2018), yielding a stratified layer of
thickness 290 km with a buoyancy frequency N � 0.14�.

Accurate estimation of MAC wave amplitudes in Earth’s core
requires the sources to have the correct spatial and temporal patterns.
Aubert et al. (2017) show that the spatial scales of convection
in dynamo models become asymptotically invariant once a force
balance between pressure, Coriolis, Lorentz and buoyancy forces
(the QG-MAC balance) is established at large scales. One way
to assess whether our model is close to a QG-MAC balance is
to evaluate the extent to which magnetic energy exceeds kinetic
energy (Schwaiger et al. 2019). In our calculations the ratio of
magnetic to kinetic energy is between 2.5 (control run) and 4 (Pm
= 2 run), giving support that our model sits in a QG-MAC balance
and accurately captures the large spatial scales of convection.

The temporal scale of sources depends on the way we choose to
dimensionalize model outputs. Once the spatial scales are reason-
able we require suitable estimates for the dimensional velocities to
obtain the correct temporal dependencies. Because velocities are
scaled by �L (and L is fixed to the actual core value), one needs to
choose an appropriate rotation rate � to convert from model time
to dimensional time. The Rossby number in our simulation is Ro =
U/(�L) � 4 × 10−3, and realistic estimates of the core velocities are
on the order of 4 × 10−4 m s−1. A modified rotation rate �adjusted =
4.4 × 10−8 s−1gives dimensional model velocities in the expected
range. Model outputs are reported at a non-dimensional time inter-
val of 0.25. This corresponds to a dimensional time interval of 66 d,
which is sufficient to resolve the excitation of a 20-yr wave. The du-
ration of both simulations is 800 time units, that is 144 yr, or about
one core overturn time. In the range of frequencies resolved by the
model, various magnetic field components are expected to follow
a power law of the form P∝ω−4, with ω the frequency (Bouligand
et al. 2016). We verified (not shown) that the temporal spectrum of
the field’s dipole component conforms to this law in our dynamo
model at high frequencies.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/233/3/1961/7024849 by Public H

ealth Library user on 22 February 2023



Excitation of high-latitude MAC waves 1967

While the Lorentz force is directly output by the model, the
two other forcings require additional processing. For buoyancy,
we extract the temperature field T and write Fbuoyancy = ρ̃g/ρ0 =
−αT T g. For the large-scale induction term, we exploit the fact
that the magnetic Reynolds number is high (Rm ≥ 200) to write
∇ × (V × B) � ∂t B. Hence, we extract the magnetic field B from
the model and apply the time derivative in the Fourier domain

F̃ I = −iω B̃.
To further illustrate the scales of convection in the dynamo model,

we show equatorial and meridional cross-sections of instantaneous
temperature anomalies from the control run in Fig. 5. The equa-
torial pattern is dominated by hot plumes rising from the ICB.
The scale and structure of these plumes are similar to simulations
carried at much lower E (see fig. 6 in Aubert et al. 2017). It is ex-
pected that large-scale structures become invariant in the asymptotic
QG-MAC regime. Reduced thermal anomalies near the CMB are
a consequence of thermal stratification in the simulation. Weaker
anomalies penetrate into the base of the stratified layer, which is
denoted by the thin dashed line and sits 290 km below the CMB
in the model. These anomalies carry buoyancy fluctuations that
can generate MAC waves through the Fr term in eq. (18). Because
we expect waves to be mostly forced by the large-scale structures,
the fact that these structures are similar to more realistic models
gives confidence in the accuracy of our approach. The meridional
section shows that temperature anomalies are organized in axially
columnar structures, as expected from the Taylor–Proudman con-
straint. Buoyant material is mostly contained close to the equator
and within the tangent cylinder. The concentration of light fluid
close to the equator is compensated by the presence of denser mate-
rial below the CMB at high latitudes, creating stronger stratification
there. We note that this meridional gradient in stratification is not
taken into account in our wave model.

4 C O M PA R I N G I N F E R R E D WAV E S T O
T H E O B S E RV E D G E O M A G N E T I C
A C C E L E R AT I O N

The forced MAC wave eq. (18) is solved using source terms com-
puted from the dynamo simulations. The dynamo calculations are
scaled to achieve realistic spatial and temporal properties (see Sec-
tion 3). However, upon dimensionalization, the amplitude of the
sources differs from expectations in the core. For example, using
the value of Ra∗ from the simulations along with realistic values
for αT, g and L and the chosen scale �adjusted yields a tempera-
ture jump across the core of 0.1 K, an order of magnitude above
current estimates (King et al. 2010). In order to recover reason-
able amplitudes for the waves we need to extrapolate the forc-
ing terms from the dynamo model to Earth-like conditions in the
core.

There are several ways the extrapolation can be done. We might
use scaling laws (e.g. Davidson 2013) to adjust the dynamo solu-
tion to make predictions for what would have been computed if we
could use realistic parameters in the calculations. Often these scal-
ing laws are tested by showing that the extrapolations produce di-
mensional quantities that are consistent with expectations at Earth’s
core conditions (e.g. Aubert et al. 2017). Alternatively, we could
use differences between the model output and expectations to ad-
just the source terms. The discrepancy noted above for the temper-
ature drop across the core is an example. We adopt the second ap-
proach here because it avoids the need to introduce a specific scaling
law.

4.1 Dimensionalization and extrapolation of the
simulated forcing terms

The various quantities extracted from the dynamo model to serve
as forcings are non-dimensional, and need to be scaled appro-
priately before being used alongside the dimensional, Earth-like
quantities in the left-hand side of (18). Denote one generic Fourier
component of a non-dimensional source term by S̃∗

m, j,ω∗ (y), re-
calling that m is the spherical order, j the radial order and ω∗

the non-dimensional frequency. Its dimensional counterpart is
S̃m, j,ω(y) = S S̃∗

m, j,ω/�adjusted
(y), where S is a dimensional scaling

factor and we recall that time is scaled with an adjusted rota-
tion rate to achieve realistic temporal dependencies. The form of
S for each forcing term is known from the characteristic scales
used in the dynamo model. When we use realistic physical prop-
erties (ρ0, μ, g, αT, L) and our adjusted rotation rate to evalu-
ate terms in S we are lead to inconsistencies, stemming from
the fact that the dynamo model does not sit in a realistic param-
eter space. Adjustments to the sources are used to eliminate these
inconsistencies.

We illustrate using the buoyancy force from Section 3. The di-
mensional form of the buoyancy force is

Fbuoyancy = −αT T g = −αT �T T
∗
g. (31)

The temperature scale in the dynamo model corresponds to the
change in temperature across the core. We recover an estimate of
the temperature jump from the simulations

�T = Ra∗�2
adjusted L/(αT g) � 0.13 K,

where we have used realistic values for αT and g. Because our
estimates for the actual temperature jump are lower (�T = 10 mK,
King et al. 2010), we scale Fbuoyancy by 0.076 to achieve a more
realistic source amplitude.

The dimensional Lorentz force is given by

FLorentz = B · ∇ B/(ρ0μ) = (�2
adjusted L)B

∗ · ∇∗ B
∗
. (32)

With this scaling, the simulated root-mean-square magnetic field is

Bsim.,RMS = √
ρ0μ�adjusted L|B∗| � 0.078 mT

in the control run (0.093 mT in the Pm = 2 run), whereas a represen-
tative BEarth, RMS inside the core is 4 mT (Gillet et al. 2010). Hence-
forth, FLorentz is scaled by a factor B2

Earth,RMS/B2
sim.,RMS = 2630

(1850 in the Pm = 2 run) to correct for this underestimation. Note
we have assumed that the characteristic length for magnetic field
gradients inside the core is adequately represented by the model (as
described in Section 3).

Finally, the dimensional induction source term is given by

F I = ∂t B = �adjusted(
√

ρ0μ�adjusted L)∂t∗ B
∗
. (33)

For the same reason as the Lorentz term, this underestimates the
realistic amplitude by a factor Bsim., RMS/BEarth, RMS. Hence, F I is
subsequently scaled by a factor BEarth, RMS/Bsim., RMS = 51 for the
control run and 43 for the Pm = 2 run.

We now use these expressions to compute forced MAC waves at
wide temporal and spatial scales.

4.2 Exciting MAC waves with a wide range of frequencies
and spatial structures

Because the observed high-latitude waves have primarily an az-
imuthal order m � 3 (see Fig. 1), we will only consider forcings
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Figure 5. Snapshots of instantaneous temperature fluctuations from the control run in the equatorial plane (left-hand panel) and a meridional plane (right-hand
panel). Note that the colourscale has been saturated to better render convective plumes; temperature anomalies are unity at the ICB.

and waves of order m = 3. The relevant quantities from the dy-
namo model at m = 3 (T

∗
, B

∗ · ∇∗ B
∗
, B

∗
) are first interpolated

onto a spherical grid containing 300 meridional points from the
South Pole to the North Pole (using the Chebyshev grid layed out
in Section 2.3, extended to both hemispheres) and a uniform radial
grid containing 58 points in the stratified layer (the number of radial
gridpoints is equal to the number of radial Chebyshev gridpoint
employed by Calypso in the same radial interval). The meridional
resolution was chosen as a compromise between adequate resolu-
tion of the modes and ease of computation. Vector quantities are also
converted from a toroidal-poloidal representation to spherical (r, θ ,
λ) components. Each forcing is then Fourier-transformed in time
and in the radial dimension, yielding a function of radial order j,
non-dimensional frequency ω∗ and meridional coordinate y. These
quantities are converted to dimensional form and extrapolated as
laid out in Section 4.1, yielding Earth-like forcing terms. The first
radial order is observed to account for over 90 per cent of the wave
forcing, so we only consider j = 1 modes. For each separate forc-
ing, we compute a wave spectrum b̃θ (ω, y) using expression (29).
From such a spectrum, one can then compute a meridionally re-
solved RMS value bθ , tRMS(y) using Parseval’s relation, as well as
a power spectrum |b̃θ,y RM S(ω)|2 by taking the RMS over the y di-
mension. As explained in Section 2.3, waves are solved for on one
hemisphere only: we split the Northern and Southern Hemisphere
parts of each forcing and average the power of the waves excited
by each part.

The high-latitude y-RMS power spectrum |b̃θ,y RM S(ω)|2 (the
RMS has been computed over latitudes poleward of 45◦) is displayed
in Fig. 6, left-hand panels. Lorentz forces and induction prove to
be the strongest excitation sources, with similar peak magnitudes
at small eastward-travelling frequencies. All three components of
the Lorentz force have similar magnitudes, but they do not excite
equal amplitude waves. The reason is due to the geometry of the
waves. The aspect ratio of horizontal to radial length scales is 102.
This geometry means that a hydrostatic force balance is dominant
in the radial direction and the radial forcings contribute less to the
wave generation. Forcings in the horizontal direction are much more
efficient at exciting waves [as the factor (Rk)−1 attests in eq. (18)].

With a higher temporal discretization, one should expect to see
distinct peaks around the eigenfrequencies of the wave operator.
However, the frequency range shown in Fig. 6 is populated with
closely spaced eigenfrequencies that preclude any such peaks. Even
though the amplitude of the waves is averaged over high latitudes,
eastward-travelling (ω > 0) modes have significant power, com-
parable even to westward-travelling modes. Indeed, although these
eastward modes are associated with equatorially focused structures
(see Section 2.3), they can have important power in high latitudes,
especially at lower m. Beyond the interval containing the eigen-
frequencies (not shown), one observes a sharper decrease in the
spectrum [proportional to F(ω)/ω2, as expected from (29)].

The time-RMS bθ , tRMS(y) is shown on the right-hand panels of
Fig. 6. Most of the wave power is contained at high latitudes. This
is expected because westward-travelling (high-latitude) waves are
confined to the polar region, whereas the eastward-travelling waves
have power at high and low latitudes (see Fig. 3 and Section 2.3).
Had we accounted for meridional gradients in the background field,
eastward-propagating waves would have shown more equatorial
confinement Buffett & Matsui (2019). The resulting wave power
at the equator would have been higher, in line with observations
(e.g. Chulliat et al. 2010; Chulliat & Maus 2014). We note that
these RMS patterns have significant power at latitudes poleward
of 80◦, unlike observations (Fig. 1). This power is dominated by
high-frequency signals with small-scale spatial variations that are
undetectable at the Earth’s surface. Only the structure of the graver
modes with broad spatial structures (shown in Fig. 3) are relevant
to the comparison with observations.

4.3 Exciting westward-travelling waves with a 20-yr period

This study was originally motivated by the observation of high-
latitude waves travelling westward with a 20-yr period (see Fig. 1).
In this section, we investigate whether MAC waves of similar am-
plitude could plausibly be generated inside the core. The 20-yr
westward frequency is shown in Fig. 6 as a dashed black line.
The meridional magnetic perturbation carried by waves excited at
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Figure 6. Predicted wave geomagnetic acceleration at the top of Earth’s core, with three different source terms. Left-hand panel: power spectra, RMS over
latitudes poleward of 45◦. Right-hand panel: RMS over all frequencies, as a function of latitude. Top, middle and bottom rows, respectively, show waves forced
by thermal, Lorentz and induction sources. Thick (thin) lines correspond to waves forced by the control (Pm=2) simulation.

this frequency, when integrated over a frequency interval of width
0.007 yr−1 (an approximately 3-yr period interval) and averaged
over latitudes poleward of 45◦, is bθ = 4.6 × 10−4, 4.4 × 10−2 and
1.0 × 10−2 mT for waves forced by buoyancy, Lorentz force and
induction, respectively, from the control simulation. Using forcings
from the Pm = 2 simulation, these values go up by 57, 13 and
47 per cent. We now relate this meridional magnetic perturbation to
a SA b̈r to facilitate comparison with observations.

High Rm in the core suggests that the radial induction equa-
tion can be approximated by

ḃr = [∇ × (v × B)]r = −∇H · (vH B0r ), (34)

where the subscript H denotes the horizontal projection of a 3-D
vector. Although we neglected the influence of gradients in the
background magnetic field B0r in deriving the wave eq. (18), we
consider their effects again here. Indeed, while the wave dynamics
are influenced by the full structure of the magnetic field [even small
scale components that cannot be observed, justifying the use of a
constant RMS value for B0r in eq. (18)], only the long wavelength
parts contribute to the observed SA, which depends more strongly
on their spatial structure. We differentiate eq. (34) in time, noting
that the wave timescale is much shorter than the secular variation
time:

b̈r ≈ ∇H · (v̇H B0r ). (35)

We finally obtain an order of magnitude for the right-hand side as
|v̇θ |B0r/L B , where LB is the horizontal length scale of variations in
B0r. Note this estimate assumes that the horizontal divergence of the
wave velocity is small compared to |vθ |/LB, which is reasonable with
a small aspect ratio and in the presence of stratification. Using the
induction equation to relate bθ and vθ , we obtain b̈r = 0.0024, 0.22
and 0.051μT yr−2 for waves forced by buoyancy, Lorentz force and
induction, respectively. These values again increase by 57, 13 and
47 per cent using sources from the Pm = 2 run.

Hence, Lorentz forces are the largest generation mechanism for
high-latitude MAC waves with decadal periods. We note that the
hierarchy of excitation sources, as well as the amplitude of the
forced waves, stay unchanged with different convective morpholo-
gies (control and Pm = 2 runs). While the amplitude estimate is
about an order of magnitude below observations (Fig. 1), it comes
after a number of approximations, most notably in the extrapola-
tion of the amplitudes of the various forcing terms to Earth-like
conditions. Although the small time span and sensitivity of current
observations limit the detection to a single wave mode, it is reason-
able to expect more features to become observable in the future with
longer coverage. From Fig. 6, one would expect higher-amplitude,
longer period waves and lower amplitude, shorter period waves
to complement the observed high-latitude 20-yr signal. For waves
forced by magnetic stresses, the present framework predicts 10-yr
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waves with SA amplitudes b̈r = 0.12μT yr−2 and 40-yr waves with
b̈r = 0.80μT yr−2.

Three main factors influence the above-mentioned estimates: the
sources, the wave model and the frequency interval over which the
wave amplitude is integrated. The latter has been chosen somewhat
arbitrarily and longer observations times may allow to resolve wave
spectra to provide direct comparison with the present result. Beyond
reasonable assumptions such as linearization, the use of a constant
background field, or Lighthill’s approximation, the wave model is
especially sensitive to the size H and strength N of the stratified
layer. The values presently used (H = 140 km and N = 0.5�) are
in the low end of the range of values proposed in past literature
(Gastine et al. 2020). Allowing for stronger stratification would
shift wave power towards higher frequencies, while deepening the
layer would generally increase wave amplitudes. Finally, uncertain-
ties in the strengths of forcings are both intrinsic to the dynamo
model and stem from the assumptions made when extrapolating
model amplitudes to Earth-like conditions. Changes in the spatial
distribution of some forcings could happen closer to Earth’s core
conditions. For example, Schaeffer et al. (2017) showed that the
strength of the magnetic field increased inside the tangent cylinder
in low-diffusivity, high-resolution simulations of Earth’s core. This
could increase the strength of the Lorentz force at high latitudes. We
also assumed that the temporal spectrum of sources was accurately
simulated once the core overturn time was set to a realistic value
(see Section 3). Aubert & Gillet (2021) observed an increase in the
power of magnetic acceleration energy at decadal frequencies in
a suite of large eddy simulations nearing Earth’s core conditions.
Such an effect could also increase forced wave amplitudes. The
length of our integrations (144 yr) is relatively short compared to
the period of the waves, and a different sample could conceivably
have more power in the convective excitation. As for the amplitude
extrapolation, one could consider dropping the assumption of fixed
convective length scales. Allowing, for example length scales to
decrease slowly as E1/9 (Davidson 2013; Aubert et al. 2017), the
strength of the Lorentz source would be increased by an order of
magnitude, yielding higher wave amplitudes. This change is large
enough to bring the amplitude of excited waves in line with obser-
vational estimates.

We conclude this section by coming back to the observed pattern
of geomagnetic acceleration (Fig. 1). The magnetic acceleration
patches are associated with secular variation patches, which Liv-
ermore et al. (2017) interpreted as the signature of a high-latitude
zonal jet, located close to the tangent cylinder, acting on azimuthal
gradients in the field. The hemispheric confinement of the jet would
explain the observed asymmetry: SA patches are stronger between
90◦E and 270◦E. We note that this interpretation does not account
for the fast westward drift of the SA pattern, and that Gillet et al.
(2019) later suggested that Livermore et al. (2017) had overesti-
mated the acceleration of this jet. In our interpretation, the tangent
cylinder plays no role in setting the position of the SA patches: it
is a consequence of the structure of the modes, as we illustrate in
Fig. 7. Our explanation for these SA patches also relies on flow
acting on background field gradients. In our case the flow is due
solely to a MAC wave. Unlike the zonal jet interpretation, flow ve-
locities in a m = 3 MAC wave are hemispherically symmetric. Still,
field gradients are stronger where the SA patches are present, which
could explain the asymmetry seen in observations. Alternatively, a
hemispherically confined forcing could excite a m = 1 MAC wave
that would superimpose on the m = 3 signal and produce the asym-
metry. Another peculiarity of the observed signal is the absence of

Figure 7. Comparison of meridional structures in observed secular accel-
eration and in the MAC wave model. The solid blue lines are meridional
sections of the CHAOS-7.12 geomagnetic acceleration at the longitudes of
two high-latitude patches (truncated at degree l = 13; see Fig. 1), normalized
by their extremal value. The dashed black line shows the gravest high-latitude
eigenmode (period = 21.3 yr) displayed in Fig. 3, also normalized.

corresponding SA patches in the Southern Hemisphere. This is eas-
ily explained in our interpretation by the decoupling of Northern
and Southern Hemisphere modes (see Section 2.3). While one may
expect the Taylor–Proudman constraint to correlate forcings be-
tween the two hemispheres, this cannot happen within the tangent
cylinder. Accordingly, we find little correlation between forcings
in the Northern and Southern high latitudes in our dynamo model.
The smallness of background field gradients in the South would
also explain why the signature of waves in the SA pattern is muted.

5 C O N C LU S I O N

Recent geomagnetic observations reveal waves propagating at high
latitudes with decadal frequencies. Several explanations have been
advanced for their equatorial counterparts, both with stratification
(equatorial MAC waves) and without (non-axisymmetric Alfvén
waves and high frequency MC waves), but few have been pro-
posed in the context of high-latitude waves to date. We examine the
plausibility of MAC wave generation at these latitudes by various
convection-related processes: buoyancy, Lorentz forces and induc-
tion. We first derive a unified physical model for MAC waves that
retains full spherical geometry and includes generic forcing terms
from both the momentum and induction equations. We introduce a
method to solve for forced waves by projecting the sources on the
adjoint eigenmodes of the unforced equation. Buoyancy, Lorentz
and induction forcings are then estimated from a dynamo model.
We extrapolate their strength from the parameter space in which
the model sits to Earth’s core conditions, assuming that the charac-
teristic length scale of convective structures is accurately captured
by the model (an assumption that is supported by MAC balance
theory).

Bringing dynamo-extrapolated sources into the forced MAC
wave equation allows to retrieve full wave spectra, including
eastward-travelling and westward-travelling waves from monthly
to centennial frequencies. Westward-travelling modes at decadal
frequencies have meridional structures consistent with observed
high-latitude patterns. At these frequencies, magnetic stresses
prove to excite waves most efficiently, yielding an amplitude of
b̈r = 0.25μT yr−2 for 20-yr waves. This estimate is within an order
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of magnitude of the observations despite the numerous approxi-
mations made in obtaining it. The present model requires mod-
est stratification and stratified layer depth, highlighting convection-
generated MAC waves as a credible candidate for observed high-
latitude oscillations.
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A P P E N D I X : D E R I VAT I O N O F T H E
F O RC E D M A C WAV E E Q UAT I O N

The derivation follows Buffett & Matsui (2019), with additional
terms coming from the forcings. The idea is to first use the hydro-
static constraint to eliminate pressure from the horizontal momen-
tum equations, and subsequently substitute for the density pertur-
bation using mass conservation. The background magnetic field B0r

is assumed uniform. After these two steps, the momentum equa-
tions become

∂2
t ∂rvθ − 2� cos θ∂t∂rvλ = N 2

R
∂θvr + B0r

ρ0μ
∂t∂

2
r bθ

+ ∂t∂r Fθ − 1

R
∂t∂θ Fr (A1)

and

∂2
t ∂rvλ + 2� cos θ∂t∂rvθ = N 2

R sin θ
∂λvr + B0r

ρ0μ
∂t∂

2
r bλ

+ ∂t∂r Fλ − 1

R sin θ
∂t∂λ Fr , (A2)

where the Brunt–Väisälä frequency is

N =
√

− g

ρ0
∂rρ0. (A3)

The solenoidal condition on v allows to express vr as a function
of the horizontal velocity components. To simplify its expression,
we define y = cosθ and note that ∂θ = (1 − y2)

1
2 ∂y ; hence

∂rvr = 1

R
(∂yv

′
θ − ∂λv

′
λ), (A4)

where v′
θ = (1 − y2)

1
2 vθ , v′

λ = (1 − y2)−
1
2 vλ. We will similarly de-

fine b′
θ , b′

λ as well as F ′
I θ and F ′

Iλ. Substituting eq. (A4) into

(1 − y2)−
1
2 ∂r eq. (A1) and (1 − y2)

1
2 ∂r eq. (A2) yields

∂2
t ∂2

z

(
v′

θ (1 − y2)−1
) − 2�y∂t∂

2
z v

′
λ

= − N 2

R2
∂y

(
∂yv

′
θ − ∂λv

′
λ

) + B0r

ρ0μ
∂t∂

3
z

(
b′

θ (1 − y2)−1
)

+ (1 − y2)−
1
2 ∂t∂

3
z Fθ + 1

R
∂t∂z∂y Fr (A5)

and

∂2
t ∂2

z

(
v′

λ(1 − y2)
) + 2�y∂t∂

2
z v

′
θ

= N 2

R2
∂λ

(
∂yv

′
θ − ∂λv

′
λ

) + B0r

ρ0μ
∂t∂

3
z

(
b′

λ(1 − y2)
)

+ (1 − y2)
1
2 ∂t∂

3
z Fλ − 1

R
∂t∂z∂λ Fr , (A6)

where we have substituted ∂ z for ∂ r (recall that z = r − R). The next
step involves eliminating the velocity variables using the induction
equation. To simplify the expressions, we first Fourier-transform eqs
(A5)–(A6) and (4). Transformed variables are denoted with tildes
(see eq. 17); note that while b, Fr and F I are decomposed using
half-range sine transforms, Fθ and Fλ are expressed with half-range
cosine transforms, according to the parity of the number of radial
differentiations applied to these terms. The induction eq. (4) now
reads

− iωχ b̃ = B0r ∂̃zv + F̃ I (A7)

where χ is a damping term defined as

χ = 1 + i
ηk2

ω
. (A8)

Differentiating eqs (A5)−(A6) with respects to z, Fourier trans-

forming, plugging eq. (A7) and multiplying by
B0r R2

iωχ N 2
yields

−I (1 − y2)−1β ′
θ + Ciyβ ′

λ

= d2
yβ

′
θ − imdyβ

′
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θ

− A(1 − y2)−
1
2 F̃θ + A

Rk
dy F̃r , (A9)

−I (1 − y2)β ′
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θ

= −imdyβ
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θ − m2β ′

λ − M(1 − y2)b̃′
λ

− A(1 − y2)
1
2 F̃λ − im

A

Rk
F̃r , (A10)

where we have defined

β ′
ξ = b̃′

ξ + F̃ ′
I ξ

iωχ
for ξ = θ, λ, (A11)

and the various parameters are

C = 2�ωk2 R2

N 2
, M = B2

0r k4 R2

ρ0μχ N 2
, I = R2ω2k2

N 2
, (A12)

A = R2k3 B0r

χ N 2
. (A13)

With a radial field of 1 mT within a 140-km-thick layer, a wave
of period 20 yr and radial wavenumber 1 has |I/M| � 0.01, hence
we can neglect the terms containing I. To see this, we rewrite eqs
(A9)–(A10) as(

d2
y − (M − I )(1 − y2)−1

)
β ′

θ

= i(Cy + mdy)β ′
λ

+ A(1 − y2)−
1
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Iλ

iωχ
, (A15)

and substitute M for M − I. The next step consists in solving for β̃ ′
λ

in eq. (A15) and substituting in eq. (A14), then multiplying by (m2

+ M(1 − y2))/M. With N � �, M is of order 10−2, hence terms in
M/m2 are neglected. We obtain:
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(A16)

For the final step, we define β ′′
θ = (1 − y2)

1
2 β ′

θ , with similar def-
initions for b̃′′

θ and F̃ ′′
I θ . This allows to get rid of the first order

derivative in the right-hand side of eq. (A16) and yields a more
compact expression. Substituting this definition, separating terms
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in b̃′′
θ and F̃ ′′

I θ , and dividing by (1 − y2)
1
2 yields eq. (18), where the

forcing term is given by
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